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Abstract 

The lost of nonentun and stiffness due to ab- 
lation nay significantly influence the vibrations 
of a solid propellant grain.  This paper presents 
an analytical study of the axial shear vibrations 
of a long hollow cylinder that is subjected to 
tine dependent body forces in the axial direction. 
The outer surface of the cylinder is bonded to a 
rigid case, and the inner radius increases mono- 
tonically with tine.  An expresaion is determined 
for the shear stress at the bond-interface. It is 
shown that thf frequency of the shear-bond stress 
increases, and that ita amplitude decreases 
towards bur.nout time.  The shear stress is studied 
for various ablation ratea.  Conventional methods 
of analysis, such aa separation of variables and 
Fourier-Bessel analysis, are not directly appli- 
cable in this problem, since the boundary condi- 
tions are prescribed on a time dependent surface. 
A modified Fourier-Bessel mode is defined that 
aatisfies the boundary conditions. By substitut- 
ing this mode into the equation of motion, a solu- 
tion la obtained by asymptotic methods in the 
vicinity of the bond-Interface. The analysis la 
extended to include the axial shear vibrations of 
an ablating viscoelastic cylinder. Vlscoelastlc- 
ity la Introduced by means of the relaxation 
function In shear. 
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auperacrlpt ~ - dynamic pert of solution 
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I. Introduction 

The designing of solid propellent rocket 
motors requlrea a consIderetIon of the dynamic 
response of a propellent-casing system to time- 
dependent body forces. The body forces may be 
associated with spinning motions, axial accelera- 
tions, etc. This peper focuses upon the axially- 
symaetrlc dynamic response due to axial accelera- 
tion, such as occurs In accelerated flight. 
Special attention la devoted to Che shear bond 
stress at the propellent-casing interface. 

The free and forced vibrations of encesed 
elastic cylinders heve been considered for various 
types of surface constraints. ,2,  The dynamics 
of encased viscoelastic cylinders have elso been 
studied. «^ These peperu present results for 
various values of the retlo of the internal and 
external radii of the propellent cylinder. In 
this way one obtelna quasi-static Information on 
the Influence of en increasing Inner radius. It 
waa only recently that the Influence of continuous 
ablation on the axial ly-«ymmetrie plane strain 
vibration was studied for both en encaaed elastic6 

and en encesed viscoelastic cylinder.^ In the 
present paper an attempt la made to analyse the 
Influence of continuous ablation on the axial 
reaponse of a burning rocket. For simplicity we 
consider a case-bonded greln of infinite length. 

To simplify the analysis the presence of any 
ster points is neglected, and the propellent Is 
represented es e thick-walled cylinder. Any atar 
point material may be ecc ninted for, however, by 
taking the inner redlua of the propellent cylinder 
as the radius the cylinder would have If the star 
point material were unllormly distributed around 
the Inner surfece.  It Is assumed thst the stiff- 
ness of the propellent is so small compered to the 



•tlffntis of the eating, that the latttr nay be 
«ttumed at Infinite. In a ttudy of a related 
frea-vlbratlon proble» by Baltrukonit8 It was 
thovn that for axially tyaawtrlc thtar daforva* 
tlont thlt aaauaptlon it acceptable for tha ttlff- 
naat ratloa that ara coaaonly encountered In aolid 
propel Iam aotora. 

Tha paper la priaarlly concarnad with tha In- 
fluence of grain ablation on tha ahaar bond 
streit. It la ahown that cha loaa of naaa and 
atlffaaaa of a burning grain aignifleantly affaett 
tha Mgnlcudc and tha frequency of tha ahaar bond 
ttrett. Since aoat propellanta are vlacoelattlc 
in ahaar tha Influence of vlacoelaatlc danplng ia 
included in tha third part of the paper. 

r • b ii • u 
r   i 

(lb) 

The cylinder la Infli Itely long and the tytten it 
antl-aynaetrlc relative to any plane perpendicular 
to the t-axia. The ttrett component '  . which it 

a ayaMtrie quantity, autt then vaniah. The 
re«einlng atreaa and ditplacaaent coaponentt ara 
independent of I, and equationa (2) reduce to two 
uncoupled equatlont of notion. The equation of 
notion in radial direction, aubject to the bound- 
ary conditiona (3) and quiaacent initial con- 
ditlona, yielda only the trivial tolutlont 
o  - o„e ■ o . The only raanining equation con- 

atitutat the governing equation of Che preaent 
problaa. 

The dynanic tolutlont that are preaanted in 
thia paper are dltcutted In relation to tha tolu- 
tlont of tha analogoua quaai-atatlc problem. The 
quatl-ttatic tolutlont for Cha elaatic cylinder 
are alapla. A quaai-atatlc aolution for Che 
ablating vlacoelaatlc cylinder la preaanted by 
Lindaay and Williana.9 

The paper contlttt of three partt which are 
concerned wich Che axial ahaar vibratlona of (I) 
an encated elaatic cylinder of conatant Inner 
radlua a , (2) an encated elaatic cylinder of o 
nonotonlcally Increasing radlua a(t) , and (3) an 
encaaad vlacoelaatlc cylinder of nonotonlcally 
incraaaing radlua a(t) . Conventional nethodt of 
analytit, auch na teparatlon of varlablet and 
Fourlar-Beaaal analytit, ara not directly appli- 
cable in tha laat two problewt, ainca tha boundary 
conditiona ara preacribed on a tine dependant aur- 
face. A nod if led Fourlcr-Bcttel node la defined 
that aatiaflaa the boundary conditiona. By tub- 
ttitutlng thla awde into the equation of notion, a 
aolution la obtained by aaynptoClc nathoda in the 
vicinity of Che bond-interface. The nachod chua 
allowa ut to detemlae the ahear-bond atreaa. 

1   o 
x 5? ^w' * p,.(t) " ptt. (4) 

The aolution of Eq. (4) la aubject to Cha boundary 
condidona 

at     r - a(t)        a^ - 0 

at      r - b ut   -0 

(5«) 

(5b) 

Aaaunlng an Initially undiaturbed cylinder the 
Initial conditiona are expreaaad aa 

u (r,C) - u (r.c) - 0  for  C < 0     (6) 

We thall decemlne aoluClona for an elaatic 
cylinder aa well at for a vlacoelaatlc cylinder. 
By elialnating Che tcreet tram Bq. (4), Che 
equaclon for Che axial ditplacenent u (r,t) of the 

elaatic cylinder it obtained aa 

du 

fl?G*r> ",<')-*. (7) 

II. The Equationa of Motion 

In a tolid body the atreaa tenaor o      aatis- 

flea the equation of notion 

fflJ.J * Pfi(*J'0 " *i (1) 

If the cylinder la linearly vlacoelaatlc the rela- 
tion between thtar atreaa and ahaar ttraln it ex- 
preaaad In tha fom 

ara " J 6(c-a)d(8ui/ar) (8) 

where F (x ,t) la a body force per unit naaa. A 

uniforn body-force diatrlbutlon ia attuned, with a 
conponant in a-dlrectlon only. Since tolutlont of 
Bq. (1) are aought for a circular-cylindrical body 
aubjacted to axially ayiaetric loading and bound- 
ary conditiona Bq. (1) raducea to 

in io      o     - o aa rr .  ra . rr   90 
9r   9a     r *>«i 

-. da   do  a 
" ♦  ««4J« + PF (t) - pVi 

or   oi   r    t* '    t 

(2a) 

(2b) 

The analytit la rettrieted to an Infinitely long 
hollow cylinder chat ia rigidly encaaad at the 
outer aurfacc and atreaa free at the tlae depend- 
ent inner aurface. The boundary conditiona for 
thia configuration are 

•(t) rx (3a) 

where G(t) la the relaxation function in ahaar. 
The equation of notion for a vlacoelaatlc cylinder 
la obtained by aubatltutlon of Bq. (8) Into Iq. 
(4). 

For convenience the following dlaenalonleaa 
quant It lea are Introduced 

W - fit/h t - c/ef (9a) 

B - r/b II(T) - cf
aFt(T)/b (9b) 

q • (C/P)*C£/b B - eo/b (9c) 

In Bq. (<)) C. la the total burning tine, w« alao 
define    t 

a(t) - a »(T) , where 1 < «(T) « (b/a ) (9d) o o 

The governing equation for the elaatic cylinder. 
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Iq. (7), can now b« rcwrltttn •• 

(10) 

Th« govtrnlag tquation for the vl»co«lMtic cylin- 
der It 

T 

r k [* J t(T-»)d(aw/aE)j ♦ H(T) - £jf  do 

where tht following subttltuClon for the relax- 
ation function was made 

C(T) - Ci(T) (12) 

The Initial condition! on tha dlownaionlest dIB- 
placement art 

Wd.O) - W(I,0) - 0 (13) 

In tarat of tha dlaantionlatt dltplacaatnt tha 
boundary condition! ara axprattad at 

at  t - ear (T)    dw/dft - 0 (14a) 

at  R - 1 W - 0 (14b) 

III. Blattic Grain of Conttant Innar Radiut 

For t eylindar of conttant inntr radiut tha 
boundary conditiont tiaplify to 

at  t - B 

at  R - 1 

dW/dR - 0 

W - 0 

(15a) 

(15b) 

If a tuddtnly appliad unifom body-force dlttribu- 
tion it contidarad M(T) - NH(T).    Tha forced 
vibration problaa it defined by the governing 
equation (10) and the initial (13) and boundary 
conditiont (15).    The tolution to thit problea it 
tought in the font of a Fourier-Bettel expantlon 
in tent of the corretponding free vibration 
modet.    The free vibration problaa corretponding 
to Eqt.  (10) and (IS) wat coatidered by Baltru- 
konit.      The aodee of free vibration are 

W - ü(nn,R)e 
iqfinT 

(16) 

where 

0(0 ,R) - J (Q »)* (Ö ) - J (Q)* ("„»)      ^l7> n onon onon 

The eigenfrequenclet 0 are the potitive roott of 

the frequency equation 

Jx(0e)Y (0 ) - JJßjVl&J) - 0 (18) non onn 

It it not difficult to thow that the functiona 
U(n ,R) fora an orthogonal tyttea on [6,0, with 

weight R. 

1 

J t ü(fin,R)U(ni|,R)dE - B * ,. (19) 
B 

where t      la the Kronecker delta, and 

1 * " i rfljn *)1 ti* )  - J (.. )Y (Ujf    ♦ t       .onon on n. 

(20) 
2     i 

n 

The aolution of  the  forct-d vibration problea it 
written in the form of  a Fourier-Betttl expention 
as 

■ 

r 
W(R,i)  -   /     T  (T)U(n   .R) 

.-11 n 
n-0 

(21) 

where the aun it taken over the potitivt roott of 
the frequency equation (17).  In Eq. (21) T (t) B 
are time dependent Fourier-Bettel coefficientt 
which are, at yet, unknown functiont of tiae.    The 
forcing function N(T) it alto expanded in teraa of 
0(0 ,R).    For the tuddenly applied ualfora body- 

force dittribution the Fourier«Bettel coefficientt 
A   of NH(T) are obtained aa n 

A|I - TT g J»" (nnP)/ [tf (nnB) - j^(nn)j    (22) 

By tubttituting the Fourier-Bettel expentlont of 
W(R,T) and NH(T) into tha governing equation 
(10), and by attuning that tarn by tern dlfferen- 
tiation it allowable, it it found that T (?) n 
tatitfics the ordinary differential aquation 

*   + q8 n 8T ' ^'0 (23) n n n 

The tolution of Bq.  (23) that tatitfiet the 
initial conditiont (13) it 

Tn(T) " " (V^nV)«0»^!»^) + An/nnV     (24) 

By tubttituting Eq. (24) and Bq. (17) into Eq. 
(21) tht ditplacaaent tolution of the problea at 
hand it obtained at 

n M 
W(E,T) 

n-0 0
n
a[V(nne>-Joi<nn>] 

X ^'^^o^n^^^n) I WW>] (25) 

Ve tlto contider tha atatlc tolution of tha 
pretent problea. The ttatlc aolution W*(E) tatit- 
fiet the equation 

dV  1 dW»    N „._. 
(26) 

The tolution of Eq.  (26) that tatitfiet the bound- 
ary conditiont (IS) it eaaily obtained at 

W*(R) - (M/2^)C^in(R) -  (1/2)0^- 1)]i(T)    (27) 

It can now be thown that tha tacond expenalc i in 

T* 



Cq. (2S) 1« Ch« Pourl«r>l*«*«l Mrlct vlth r«tp«ct 
to Ch« »ytm (17) of (q'/^M) tlaaa tia« •(•tic 
•olwtlon W*(I). la ih« u^ual fathloa Ch« aolutlon 
of tho dynoalc probloa, tq. (25), thus coMloea of 
• vikrocion «bout tho •(•tic oqullibrlua position. 
«• writ« 

«(i.t) . vo(|) ♦ W(i,T) (28) 

Of portlcuUr lnttr«»t  In ch« protont probloa 
1« ch« djmaaic ov«rocr«ta «c ch« cylliKl«r-c««ln| 
lBC«rfM«.    L«t ch« 4lMo«lonl«it «httr «cr«!« 
b« 4«flM4 •• n 

rt 
ari/Wib {29) 

Th« dynaalc ov«racr««a can Chan ba wrlttan «a 

ltn • (<•/■)«/»» (30) 

•y ««ploylnf Iq. (23) cha ah««r-bond ovi 
t ■ 1   la d«c«r«iMd aa 

Y        Ji,(0ll»)eo«(Oi|qT) 
(31) 

In Iq. (31) cha fellovlag idandty froa th« thaory 
of B«aa«l funcclona «M uaad10 

^(s)!^!) - Jo(t)Tt(i) - 2/n, 

IV. Th« Abl«tiM ll«aclc Cr«lo 

(32) 

In Ch« pravloua aacclon it la ahown that for 
tha non-ablatlag cyllndar th« dlapIacoMnc W(1,T) 
can b« «spraaaad «a th« ata of th« acacic aolutlon 
W*(E) «ad « poriodlc fuacdoo 9(t,T). It la no» 
aaauaad th«t for Ch« «bUclnf cyllndar tha dla- 
placaaanc W*(ttT) can alao b« «spraaaad In th« 
fona 

»^(E.T) - /•(I.t) ♦ i^(l,T) (33) 

In Iq. (33) «^(t.T) la th« aoludon of th« quaal- 
atatlc problaai, l.a. th« aolutlon of Iq. (26) that 
MClaflaa ch« boundary coodltlooa (14).    If tho 
body-fore« ayataa la auddanly «ppllad, «« aaally 
obtain 

/'(I.T) . (■/2^)[^«'(T)I«(I) - 

- (I/IHI1- 1 )]§(▼) (34) 

iy aubacltuclo« of Iq« (33) for »^(I.T) la Iq. 
(10) 1C la found Chat for t > 0 th« «Bin 
function 8^(1,T) aatlafla« th« «quatlon 

Th« Initial condlclona on 5^(1.T) at T - O* «ra 
obtalnad froa Iqa. (33) «ad (34) «a 

5* (1,0*) - - (■/2^)C^ln(t)- (l/2)(^-1)] (36«) 

5* (1.0*) - - («/2qi)[2^■ ho*) Ml)]     (36b) 

Th« function ir(l,t) aaiat also aatlafy tha bound- 
ary condltlona (14)• 

fine« tha boundary condltlona on ITU.t), Iq. 
(14), «r« pr«acrlb«d on « tbaa dapandnnc boundary, 
cha coavondonal aachoda of aaparacion of varl- 
ablaa «ad Vourlar «aalyala braak down. In chla 
p«p«r It la propoaad to aaak a aoludon of Iq. 
(33) In caraa of aroalva f r«a vibration aodoa chat 
«r« dafload aa 

Vn [V^'1! * Jo [V^] To [V^l " 

- Jo [VT>] Yo [h^*]     (37> 

Iq. (37) r«pr«aanca Cha aodoa of froa vlbradon 
of th« conacaac-radlua probloa, Iq. (17), If th« 
clja« dapandanc functloaa X (T) «ra raplacad by 

a 
th« conatanta 0 . It la notod that Iq. (37) 

n 
«utoaatleally aadaflaa 

[«,<T).l] - for  1-1 (38) 

Wo aov roqulra 

&Vn [V^1] / ai " 0      for     * " ao,<T>    <39> 
Tha condition (39) ylolda aa aquation for X ("O n 

" Jo [Xn<T)] Y» [Xn(T)Bor(T)] " 0       (40) 

Equation (40) haa tha appearance of a frequency 
aquation, but tha "frequencloa" are tlaa dependent 
funcdona X (T). On a conatant boundary I ■ 8 tho n 
frequency aquation (40) roducoa, of couraa, Cr Iq. 
(18). Tha frequency equation (18) of tha cor^atant 
Inner radlua problea waa conaldered by Baltru- 
konla, who tabulated the elgenfrequenclea 
R ■ 0 (1 • 8 ) for varloua valuea of 8. For tha n   n 
fIrat three aodoa the cabulaced H are ahown «a 

n 
functlona of 8 In Pig. 1. It can b« noted that 0 n 
Increase« for Increaalng 8, where 0   approachea n 
Infinity aa 8 approachea unity. The curvea of 
Pig. 1 are uaed to deteralne the aolutlona of Iq. 
(40). Por a certain tlaa v - Tj ehe aolutlon 

X (Tj) la obtalnad «a [I-BQ'(T. >]' claea the 
n 

ordlnate which correaponda    tie abaclaaua 
8or(Tl). in fact, alnca the  rvea In Pig. 1 are 
•laoat straight line» we «re Justified In aaploy 
lag a linear epproxlaatlon. More apeclflcally, we 
can write for 8 * 0.333 

MT) - [2.0954-.53Bor(T)] / [l.Ov(T)]  (41«) 

X,(T) - [4.9577- .248Bar(T)] / [l-Bof(T)] (41b) 

MT) - [8.0033- .l5lBaf(T)] / [l-Bor(T)] (41c) 

Th« «xpr«aalona (41) «r« valid for ety(T) < 0.99, 
1.«. th« preaent conaldaratlona are perdnant till 
Juat before burnout. 

fot 
A aolutlon of Eq. (35) la now attenpted In the 

Ti j 



**(»,*) -7 lB(T)V <!,▼) (*2) •„(')• rMT)]    "P fl<J ^ X (•)dr   ♦0(l/q)  (4M) ni Lnj L       J     n 

It is noticed chat the itnu of w (R,t) «re not 
CUMIC«! ««paration of variablat •olutlona, tinea 
both SO) and V (I.T) ara function! of tha diaan- 

n       n 
aionlass tiaa T, Navarthalaat Eq. (42) it aubatl- 
tuted in Eq. (33). By assualng that tha nth tarn 
of tht axpanaion tatiafiaa Eq. (33), tha «ubatitu- 
tion ratulta in 

n   n   n 

" h LSn<T)Vn(t'T>] * ^^„"("n.»)    <*3) 
The late tarn in Eq. (43) ig vialdad by tha 
Fourier-Bataal axpanaion of ^ WA*/>T3 in tanu of 
the nodes of free vibration, Eq. (17)» of tha 
cylinder of conatant inner radius. Tha function 
Q(T) and the Fourier-Beaaal coefficient D are 
derived as n 

Q(T) - (we'/q^teKT)8 ^flf(T)»(T)] , (44) 

and 

Dn - (n/ßn6)J^n^Jx (nBe) / [J»' (fine).J0
8
 (Q,)] (45) 

In en attempt  to eliminate R from Eq.  (43) we 
divide through by V (R,?).    As was expected n 
V (R,T) does not simply cancel out, and an exact n 
solution of the type (42) is apparently not pos- 
sible.   We shall now, however, restrict tha an- 
alysis to tha vicinity of R - 1.    Using 
L'Hospital's rule it can be shown that 

lim [$./VJ - 0 

llm [V /V ] - 0 
lr1     n    n 

lim [U(n    R)/VJ - 1 
R-1 " ,l 

(46a) 

(46b) 

(46c) 

In view of the above limits we may write in the 
vicinity of R • 1, that ia, near the bond inter- 
face, 

i/O ♦ ia*i<T)VT> - • Q<T)D
n (47) 

The function X (T) ia defined by Eq. (41) for tha 
n 

first three modes. It is apparent that in general 
Eq. (47) cannot be aolved exactly for arbitrary 
or(T). Rut an advantageous feature of Eq. (47) ia 
that the real parameter q is large. An approxi- 
mate method for solving Eq. (47) for large q ia 
avsilable. 

We shall first consider the hoswgeneoue 
equation. An asymptotic solution of tha homogana- 
ous equation can be determined by Horn's method.11 

The solution which ia obtained by Horn's method ia 
in the form of a series of descending power a of q, 
which are asymptotic to exact solutions of tha 
differential aquation. By using Horn's method tha 
two independent complementary solutions of Eq. 
(47) are obtained aa11 

r      r^    r      T 
8 (T)- X (T)  cxp  -Iq  X U)ds *0(Vq)(48b) 
n«    i. n        L.   v  n 

o 

It is cesy to check thet the Uronskien of S  end 
ni 

S  is -2iq .  By using a well known theorem^ the 
na 
epproximate solution of Eq. (A7) is obtained as 

!-%. 
Sn(T) - [XB(T)] {e .1« [q J xn(s)ds] ♦ 

o 

♦ C" cos [q J Xn(s)ds] } ♦ KT) (49a) 

where 

P(T) 'Tiql [»»(T)8,(5) -St(T)gl(5)]Q(5)d? (49b) 

A simplification of Eq. (49b) is achieved by 
introducing the new variable 

J ««<•*• (50) 

Iq. (49b) can Chen be rewritten aa 

-4       v 
P(T)

""U
X

II
<T)

] !■ {«^I W)«'1^*'} (5U) 

in which 

• J V)dl 
(51b) 

and 

♦ (v) -«„^(v)]   Q[?(V)] (5lc) 

In evaluating tha integral in iq. (51a) we 
again take adventege of the fact that the exponen- 
tial exp(-iqv) eontaina tha very large real 
parameter q. Integrale containing auch an ex- 
ponential ara euited for evaluation by tha method 
of stationary phaaa.U The method of atationary 
phase enteile Che replacement of tha real 
integral by a contour integral along tha lines 
v ■ -iw and v ■ vj-iw. Since q ia a large real 
parameter tha exponential exp(-qw) dies out very 
rapidly and tha main centributiona to the 
integral cone from near v ■ 0 and w ■ w^. The 
epproximete evaluation of Eq. (Sla) yields 

P(T). ♦q",XB(T)-S^(oV,W)coa[qJx|i(s)ds] - 

- q^X|i(T)
-"Q(T) ♦ 0(1/q) 

The cone tents C* and C8 in Eq. (49a) are 
n    n 

(52) 



dcttralMd froa ch« laltlal cpodltloM on I (Y). 

It !• M«n froa lq. (49b) chat P(0) • P(0) • 0 . 

Th« Initial valua of ^(l/), iq. (36), la than 

Al.O) - J Cj; [la(0)] V|i(l,0)       (53a) 

Alao, by aaglaceiaf taraa of ordar 0<Wq), wa 
darlva 

^(1.0) • X cl
o , [l^O)]* V^I.O) 

rewrlttan at 

(53b) 

Tha Initial condltlooa on W^(1,T) art praacrlbad 
by lq. (36).    Tha axpraaalooa in Iqa. (36a) and 
(36b) ara in tama of B, aad ehay can ba aspandad 
In Pourlar-laaaal aarlaa of U(0 ,1).    It «raa 

tt 
obtarvad bafora that V{Cl ,1) - V (1.0) , and tha ■ a 
constant« (T aad C1 can ba obtalnad by aquatint n n 
Eqa. (53a) aad (53b) to tha Peurlar-Baaaal axpan* 
alona of Iqa.  (36a) and (36b) raipactivaly.    In 
thla «ay tha eooatant C*  la obtalnad aa 

a 
■n 

0» n 
(56) 

Tha eooatant C*  la alao aaally obtalnad.    It tuma 
out that C1  la of ordar 0(1 /q) aa eoaparad to (T  , 
and C* la tharafora naglactad.    laapaetloo of Iqa. 

n 
(52), (46) aad (56) ahova that P(T) la of ordar 

0(1/qa) aa coaparad to C* , thua P(T) la alao 
n 

naglactad. In tha vicinity of t ■ 1 tha function 

V
A
(I,T) any than ba vrlttan aa 

»^(I.T)- -J? I C(T)V|i(l,T)eoa[q J Xn(t)da] (55) 

whara 

C(T) 
X-(T) 

•h Jt9<fln*) 

a »/• 
^■(fj P) - J *(n ) *  n '   on' 

(56) 

Th« dynaalc ovaratraaa at tha «haar-boad 
Intatfaca I ■ 1 la finally obtalnad aa 

ENM) - (q'/ioai^/ai 
m 

- 2 ^C(T)coa[q Jxn(«)da]     (57) 

o-O       o 

M* (57) proparly raducaa to lq. (31) for a non- 
ablatlai cyllndar whan X.(T) - x (0) • 0 . 

n     n     n 

V. Tha Ablatlna Vlacoalaatlc Grain 

Tha «quatlon that govarna th« dynaalc r«aponaa 
of a vlacoalaatlc coro la darlvad la faction II, 
aaa lq. (11). By raaovlng tha dlacontlnulty at 
T ■ 0, «nd by Integrating by part« lq* (II) !• 

o 

♦ BH(T) • —f (58) 

Tha dlaanalonlaa« paraiMtar q 1« defined by Eq. 
(9c), whara G now danotaa tha glaaay «haar nodulua 
of tha vlacoalaatlc aatarlal. It la notad that 
tha body-fore« dlatrlbutlon la unlfora and «uddan- 
ly applied. 

A Unaar vlacoalaatlc aatarlal can in ganaral 
ba charactariaad by a diacrat« apvetrua of relax- 
ation tlaaa T . Tha ralaxation function G(T) aay 

than ba axpraaaad aa 

C(T) - Gt ♦ ^ ^ aap (-T/T^ 

1-1 

(59) 

In lq. (59) C_ danotaa tha rubbery ahaar aodulu«. 

By coaparlaon with lq. (12) tha function g(T) i« 
obtalnad aa 

g(T) - (6,/C) ♦ ^ (C^C) axp (-T/T^ 
1-1 

(60) 

In thla papar wa ahall eooaidar vlacoalaatlc 
aatarlal« whoa« ralaxation functlona in ahaar ahow 
a rapid dacraaaa for vary abort tlaaa, and than a 
gradual dacraaaa to tha rubbery ahaar aodulu«. In 
tetaa of tha ralaxation apactrua thla aaana that 
tha diacrat« ralaxation apactrua conalata of a 
nuabar of vary aaall ralaxation tlaaa (1 < i < 'i) 
aad a nuabar of larger ralaxation tlaaa 
(ll < lit).   Mora apaelfically wa aaauae that 
tha vlacoalaatlc aatarlal can be characterised by 
a diacrata ralaxation apactrua T. auch that 

(1/Tj) » fl^   tor       1*1«^ 

and 

O/Tj) « qßi   for   ^ < i < i 

(61a) 

(61b) 

In Iqa. (61a) aad (61b) q^ la the firat natural 
frequency of aa alaatic core with tha glaaay 
aodulua aa ahaar aodulu«. Tha function gCO, lq. 
(60), la now rewritten aa 

|(T) - (6Il/C) ♦ *(T) ♦ g^T) (62) 

la lq. (62) fe(T) la tha auaaation of exponent lei« 
over tha vary abort ralaxation tlaaa, lq. (61a), 
•nd MT) cover« tha relaxation tlaaa defined by 
lq. (61b). Tha «xpraaaloa (62) ia^differantiatad 
and aubaequantly aubatitutad for g'(T-a) in lq. 
(58). In view of tha stipulation (61a) tha 
latagral containing fc(T-a) can ba alaplified. 

t I, 

J *V-.) g da or - Sjlill ^Ci/C     (.j, 

— -n^ 1 



'     I 

i. ,.   (38) can tlieu be rewritten as 

K    ^R L* 51 J + R    5R L* J   *(T--> ^R dV * 

Th« vlacoalastlc matr.ial   can alao be  charac- 
terized by a discrete spectrum nf  retardation 
tlats.     This characterization  implies  that   the 
craap  function may be written as 

(6A) 

where 

t> 
P8  • q3 [^   -   i (VC)] 

1"1 
(65) 

We shall again seek a dlsplaccatnc solution In 
the form of an oscillation about th« quasi-static 
displacement W^ (R.t). 

wJtR.f) - wJ*(R.T) +wJ(R.T) (W) 

By substitution of Eq. (bb) for W(R.t) In Iq. (64) 

the governing aquation for W^(RtT) is obtained as 

o 

I?4!?" (67) 

The initial conditions on 9^(1,?) follow fro« tha 

values of the quasi-static displacsMnt and ita 

time derivative at T • o+. The quaal-scatic 
viscoelaatie diaplaceaent is diacuaaed next. 

The stress o  for the quasi-static problea is 

governed by Cq. (4) if the right-hand aide of that 
equation is tero. The diaenaionlesa quasi-static 
stress that alao aatisfiea the boundary conditions 
(14) la easily obtained as 

£„»#▼) - 0/2) [^ffV)/l - »] H(T)    (6«) 

It is noted that Eq. (68) doea not contain an 
elestie constant and the streas solution ia thus 
independent of the aatcrial behavior. It follovs 
that Eq. (68) ia alao the quaai-atatic atreea for 
a viscoelestic grein. It was pointed out elae- 
wher« that the quaai-static viscoelestic atrain ia 
then foi-Mlly obtained by aeana of the creep 
func.ion ea 

awJVR • J D(t-s)dE(E,a) (69) 

In Eq. (69) D(T) ia the disNnsionleas creep func- 
tion.    Integration with respect to R yields the 
quaai-atatic diaplacsswat W**(R,T). 

T 

wj*-^ J D(T-a)d[e,ar,(s) fn(R). jO^-l)] (70) 

D(T) - (N/q') 1 +   d^1 - e"' TJ)I    (71) 

In Eq. (71) d arc dlmenslonless constants and T 

arc retardation times. The assumption that the 
relaxation spectrum consists of a number of very 
small relaxation times and a number of larger 
relaxation times implies a similar distribution of 
retardation times in the rctardetion spectrum. 
Let 0h(T) cover the exponentials with retardation 
times much larger than the period associated with 
the firat natural frequency of ahear vibrations. 
Following the seme procedure which yielded Eq. 
(67), the quaai-atatic viscoelaatie solution can 
be rewritten aa 

wj* • p- ['••(') M*) - ^«"-l )jH (T) + 

♦ J Db(T.e)dJ:(I,e) (72) 

where 

M - ■ + i (73) 

The initial conditions on Wy are now determined 

from Iqa. (66) and (72). It is noted that by this 
procedure the influence of the very short retarda- 
tion times is expressed in the initial conditions 

on V* rather than in the forcing term d3w^ /dTa on 

the right-hand side of Eq. (67). As in the 
elaatlc problem (section IV) the particular solu- 
tion due to the forcing function Is of order 
0(1/T. q ) as coaparad to the solution due to the 

initial conditions. Since the remaining part of 
the creep function D|(T) contains only retardation 
times much larger than the period of vibration we 
may completely neglect the influence of the forc- 
ing function. Eq. (67) can thua be simplified to 

(74) 

Guided by the solution of Che analogous clas- 
tic problea, Eqs. (42) and (49a), lorn* a method is 
extended and a solution of Iq. (74) la sought la 
the form 

[O •[•*<'>] v1^ (75) 

where V (R,t) la defined by iq- (37), end 
n 



[8v(T)] " {■W co9 ^(T>] + 

*  Cp(T)/q3 tin [q»(T)}/(T,q) (76«) 

In Eq. (76«) 

(76b) 

At in th« «lastlc problta all C«nu which contain 
q in tha danoainator arc naglaetad in first 
approxlaacion, 

[flj] - «(T) cot [qw(T)] VB(E,T) (77) 

Tha pottulatad aolution Eq. (77) it aubacitucad 
into Cha incagrodiffarantial aquation Eq. (76). 
For cha nth cars chia raaulct in tha aquation 

- paX "(T) «(T) cot [qwCr)] V.(1,T) - 

taken to vanith separately. Thia rvtultt in 

^(T) - p Xn(T)/q • <8U> 

and in the ordinary differencial aquation 

2 ■ & + ■ ft - fo(0) m Xs / 1 - 0       (81b) 
n 

Eq. (81b) it tatitfied by 

■(-) - Kn exp [q8|;(0)t/2pa]/x][(t)      (82) 

where K    it a conttant.    By aubatitution of Bqa. 

(81a) and (82) into Bq.  (77) wa obtain 

[5j]    - «(T) coa [p j XB(i)dt] Vn(B,T)        (83) 

It it notad that in firat approxiaation tha 
daapint it priaarily dataminad by tha larger 
relaxation tiaaa. Tha vary abort relaxation tiaea 
Influence tha frequency of tha vibration. For 
le(0) ■ 0 and p ■ q tha aolution raducaa to tha 
elaatlc aolution. 

• q* J it<T-«) ?(•)  ■(•) cot [qu)(t)] Vn(l,t)dt -      Tha eeaplata aolution WJ(B,T) conaiata of a 

ax8 
(78) 

In evaluating tha Integral in Bq. (78) w« take ad- 
vantage of tha stipulation that g|(t) covera tha 
part of tha relaxation tpactrua that conaiata of 
larger relaxation tiaaa, Bq. (61b). By integra- 
tion by parta, and by invoking tha stipulation Bq. 
(61b) tha intagral ia evaluated as 

J la'C-a) «"(a) a(s) cos Cq^s)] V|i(R.a)da sr 

o 

■(T) X*(T) g;(o) 

 ^(T)  iln t*"^3 Vn(,l,T)   (79) 

The right-hand aide of Bq.  (78) is obtained by 
atraightforvard differentiation of Bq. (75).   Aa 
in solving tha elastic problea Eq. (78) it then 
divided through by V (B,T>, and the doaaln of 

n 
interett ia narrowed to tha vicinity of R - 1 . 
In view of tha liaita (46a) end (46b) the tense 
containing dV (a,T)/dT and d8V (B.-O/dr8 drop 
out.       n n 
In the vicinity of B • 1 Bq. (78) raducaa to 

- p*<(T) «(T) coa [«■<▼)] - 
n 

- q a(T) X8^)^^) ain Cq»(T)] / 4)(T) - 

- ■(T) coa [qu)(T)]- 2 q «(T) d)(T) ain[qii>(T)] . 

- q a(t) B(T) sin [qi«»(T)] - 

- q* a(T) d)(T)8 coa [q<fi(T)] (80) 

Followina the general procedure of Hprn'e ■ 
the coefficients of tens« of order q and q 

tuaaation over n aodet of tha type (83). Tha 
conttantt K are dataralnad froa the initial con- 

n 
dition on tha ditplacaaant. For the viacoelaatic 

problaa Cha dlaplacaaant ac T ■ o4* ia obtained 
froa Bq. (72). It ia noticed that thia Initial 
value diffara by a aulciplicacive constant N/M 
froa Cha diaplaeaaanc at T - o+ of Cha previously 
considered elaatlc problaa. It follows that cha 
viacoalaacic diaplaeaaanc say be written aa 

«{(B.T)- -MJ'J K(T) Vn(B,T)cos[p J Xn(a)ds] (84) 
q n 

where 

X(T) - C(T) exp [^Be^OT/p8] (85) 

•a aachod11 

are 

and C(T) la defined by Bq. (56).    Siailarly the 
bond-stress at R • 1   ia obtained aa 

ijtl ,T) - 2(llpB/Mq8) Y K(T)cot[p J Xn(t)da]      (86) 
n o 

VI. Dlacuaaion of the Reaulta 

The axial ahaar vibrations of an ancaaed 
elastic cylinder of constant inner radlua a , and 

of elaatlc and viacoelaatic cylinders of aono- 
tonically Increasing inner radii a(t) were studied 
in thia paper. Tha solutions of thaaa three prob- 
leaa involved tha aasuaptlon that the unlfora 
body-force distribucion is suddenly applied. The 
Heevlslde unlC function H(T) is used because Che 
dynaaic effects are illuaCraced aoac effectively 
by a suddenly applied load. For «any practical 
probleaa tha load aay, however, have a finite rise 
tiae. For such probleaa the solutions ia thia 
paper present upper Haiti on the intensity of the 
dynaaic effecta that aay be expected. 



The Influence of • finite rite tine can alto 
be studied directly by modifying the present aulu- 
riont.  For the dynamic response of the elastic 
cylinder of constant inner radius a thia can be 

don« very easily by solving Eq. (23) fur arbitrary 
time dependence of A (T).  It ia easily shown thct 

the aoplitudes of the vibrations decrease with 
increasing rise time of the load.  Inclusion of a 
finite ria« tine of the load, for the clastic 
cylinder with ablating inner aurface is somewhat 
more troublesome, since it ia then less obvious 
what term« can be ignored in Eq. (49a). Dynamic 
effects arc, of course, leaa pronounced for an 
increasing rise time. More care must slso be 
exercised in considering a gradually applied load 
in the viacoalaatic cylinder. If the load is 
suddenly applied the influence of the short relax- 
ation times may be included in the initial con- 
ditions, Eq. (72). In thia way the damping influ- 
ence on the dynamic aolution of the very small 
relaxation times is ignored.  If the load is 
gradually applied the Influence of the short 
relaxation times further diminishes. A complica- 
tion arises, however, when, depending on the ria« 
time, more term« are needed in Eq. (76a). 

For the elastic grain of conatant inner radius 
R - 6 the shear-bond ovcrstreaa at the propellent 
casing interface, Eq. (31), ia computed for 
6 ■ 0.4 , 6 ■ 0.6 and 6 ■ 0.8 . The eigenfrequcn- 
cies 0  ,  Eq. (18), corresponding to the different 

values of S, can conceivably be obtained from Fig. 
1. The difference of Bessel functions in Eq. (31) 
la, however, very sensitive to email deviations in 
0 , and more accurate values of n 12 are therefore 
n n 

uacd to compute tht Bessel functions in Eq. (31) 
and in Eq. (56)._ It la found that the amplitudes 
of the modes of I  decrease rapidly and it la r« r  ^ 

sufficient to retain only the firat three modes. 
In Fig. 2 the sum of the first three modes and the 
firat mode of the shear-bond ovcrstrcsa arc shown 
for 6 - 0.4 . The sum of the firat three modes of 
the shear-bond overstress la shown In Fig. 3 for 
B ■ 0.6 and S ■ 0.8 . It la noted that for great- 
er values of ß the amplitudes are smaller and the 
frequencies are greater. The relatively aoft 
material of the cylinder la defined by q • 5.10?, 
Eq. (9c). 

The ahaar-bond overstress at R ■ 1 for the 
ablating elastic grain la examined for varioua 
ablation rates. The Influence of the ablation 
function <y(T) la shown by considering the func- 
tions 

Qf(T) - 1 +XT    , where X - (1/8) - 1 (87a) 

and 

»(T) - (1-HT)'^ , where K - l-B8    (87b) 

For 8 ■ 0.4 the ablation functions (87a) and 
(87b) arc shown in Fig. 4. 

From the expression tor £*(R,T), Eq. (57), It 
la noted that the amplitudes of the modes 
decreaa« and the frequentlea increase towards 
burnout. We define the frequency function 

♦ni " fv*' <M) 

The subscripts of i       rH«r (•> tin ;.!■•. (n-1 ,2,3) 
ni 

and  the ablation  funcii m.s   (i   ',.,').     M. re 
specifically,   i   - '    intiicatcs  ai i accordlog 
to  Eq.   (87a),   i  ■   2  Ablatimi   aii   niim    I     Eq. 
(a7b)  and  1  ■ J  indicates  m   atiljjtlun   »(i)      1   , 
According to Eq.   (M)   the   lunctionc X  (T) may be 
expressed  as 

Xn(T)  '  rcn-d
n

V'(7)   /'-^(^i (»») 

where the constants c1 , . and d.   . are shown In 

Eqs. (41a,b,c).  By subsliturion of Cqs. (87a), 
(87b) and (89) into Eq. (88) the frequency func- 
tions are evaluated as 

*n1   " V  "  C<VdB)/(1'8)^ ln (1"T) <90a) 

♦ , -- Lc /(I.^)]II-»T)* + e]3 ♦ c (i+e)/(i-e) ♦ n< n n 

+ 2d PC(I-KT)^ - 13/(1-8*) - (90b) n 

-[2B8(cn-dn)/(1-B8)] In {[(1-KT)i-0]/(1-e)] 

n3        n (90c) 

The equations (90a) and (90b) Indicate that the 
frequencies increase rapidly towards burnout aa T 
approaches unity.    From Eq. (56) It ia noted, how- 
aver, that the amplitudes approach tero aa T 
approaches unity. 

The frequency functlona t. .  for the first mod« 

are shown In Fig. 5.    The fr«qu«ncy functions «r« 
d«t«rmin«d up to f - 0.95.    It la noticed that 
linear ablation according to Bq.  (87a) results In 
a aaich more rapid increase of th« frequencies. 
The frequency functions ♦   .  for higher modes ar« 
shown In Fig. 6. n 

Th« observations on amplitudes and frequencies 
ar« further illustrated by Figure« 7, 8, 9 and 10. 
The figures 7 and 9 show the first mode of Eq. 
(57), respectively near T ■ 0.5 and T ■ 0.9 . Th« 
sum of th« flrat three modes of th« ahaar-bond 
stress. Eq. (57), is shown for T • 0.5 and T ■ 0.9 
In Fig.  8 and Fig.  10 r«ap«ctlv«ly. 

Th« results presented In this paper show that 
the frequencies of axial «hear vibrations lncr«a«« 
significantly during ablation.    Thia effect may 
Influence th« structural Integrity of th« 
propelIant-casing syst«m. 
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Fig. 6     Frequency functions ^ni versus x for higher  modes. 
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